Ученые записки Таврического национального университета им. В. И. Вернадского **Серия «Биология, химия».** Том 24 (63). 2011. № 1. С. 225-231.

УДК 544.175+546.562+546.732

СИНТЕЗ И ИССЛЕДОВАНИЕ СТРОЕНИЯ КООРДИНАЦИОННЫХ СОЕДИНЕНИЙ КОБАЛЬТА(II) И МЕДИ(II) С 3-МЕТИЛ-1-ФЕНИЛ-4-ФОРМИЛПИРАЗОЛОНОМ-5

Шульгин В.Ф. 1 , Певзнер Н.С. 1 , Коншина О.И. 1 , Конник О.В. 2 , Александров Г.Г. 3 , Еременко И.Л.³

 1 Таврический национальный университет им. В.И. Вернадского, Симферополь, Украина

 $^2 C$ евастопольский научно-производственный центр стандартизации, метрологии и сертификации, Севастополь, Украина ³Институт общей и неорганической химии им. Н.С. Курнакова РАН, Москва, Россия

E-mail: chemsevntu@rambler.ru

Описан синтез и результаты исследования молекулярного строения координационных соединений кобальта(II) и меди(II) с 3-метил-1-фенил-4-формилпиразолоном-5 методом рентгеноструктурного анализа.

Ключевые слова. кобальт(II), медь(II), 3-метил-1-фенил-4-формилпиразолон-5, кристаллическая структура.

ВВЕДЕНИЕ

4-Ацилпиразолоны-5 являются структурными аналогами β-дикетонов и поэтому образуют прочные координационные соединения с катионами металлов [1]. В литературе описаны результаты исследования кристаллической структуры ряда координационных соединений 3d-металлов с ацилпиразолонами [2-7]. Тем не менее, некоторые представители этого перспективного класса лигандов до сих пор мало изучены. В настоящем сообщении описан синтез и результаты исследования молекулярного строения координационных соединений кобальта(II) и меди(II) с 3метил-1-фенил-4-формилпиразолоном-5 (HL):

МАТЕРИАЛЫ И МЕТОДЫ

Исследуемые координационные соединения синтезировали по следующей методике. К раствору 0,606 г (0,003 моль) 3-метил-1-фенил-4-формилпиразолона-5 в 20 мл 96%-ного этанола добавили 0,120 г (0,003 моль) гидроксида натрия и перемешивали 30 мин. К полученному раствору добавили раствор 0,0015 моль хлорида соответствующего металла. Реакционную смесь перемешивали в течение часа при комнатной температуре. Образовавшийся осадок отделили фильтрованием, промыли этанолом и высушили на воздухе. В результате получили 0,726 г и 0,768 г мелкокристаллического порошка светло-зеленого цвета для меди(II) и бежевого цвета для комплекса кобальта(ІІ). Монокристаллы выращены перекристаллизацией из смеси метанол-пиридин. Рентгеноструктурное исследование проведено при 296 К на автоматическом четырехкружном дифрактометре Bruker APEX-II CCD ($MoK_{o^{-}}$ излучение, графитовый монохроматор). Учет поглощения в кристаллах выполнен по методу азимутального сканирования. Структуры расшифрованы прямым методом и уточнены методом наименьших квадратов в полно матричном анизотропном приближении с использованием комплекса программ SHELXS-97 и SHELXL-97 [8]. Атомы водорода подсажены геометрически и уточнялись в модели "наездника". Кристаллографические данные, детали расшифровки и уточнения структур приведены в Табл. 1. Полный набор рентгеноструктурных данных будет депонирован в Кембриджском банке структурных данных.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В результате проведенных исследований установлено, что комплекс кобальта(II) с 3-метил-1-фенил-4-формилпиразолоном-5 (соединение 1) имеет состав [$CoL_2\cdot 2Py$]· CH_3OH . Молекула метанола занимает внешнесферное положение и разупорядочена по двум позициям. Общий вид координационного соединения представлен на $Puc.\ 1$, наиболее важные длины связей и валентные углы сведены в $Taбл.\ 2$.

Координационный полиэдр катиона кобальта(II) может быть описан как слегка искаженный октаэдр, образованный четырьмя донорными атомами кислорода 3-метил-1-фенил-4-формилпиразолона-5 и атомами азота двух молекул пиридина. Молекулы 3-метил-1-фенил-4-формилпиразолона-5 координированы в депротонированной енольной форме с образованием шестичленных хелатных циклов, которые формируют с ионом кобальта(II) экваториальную плоскость. Аксиальное положение в координационном полиэдре занимают атомы азота. При этом длины связей Co–N3' и Co–N3 (2,197 Å) несколько превышают длины связей атомов кобальта с донорными атомами кислорода Co–O1 и Co–O2 (2,046–2,101 Å).

Длины связей углерод-углерод в хелатном узле лиганда (1,388–1,417 Å) практически соответствуют длинам связи в ароматических структурах и в графите (1,394–1,421 Å) [9]. В то же время длина связей углерод-кислород (1,252–1,268 Å) несколько превышает стандартную длину связи С€ в кетонах и альдегидах (1,215 Å), но существенно короче одинарной связи углерод-кислород (1,426 Å). Это свидетельствует о делокализации двойных связей с образованием сопряженной π-

системы. Длины связей в пределах лиганда и координированных молекул пиридина имеют обычные значения [10]. Плоскости хелатного металлоцикла и пиразольного кольца компланарны. Бензольное кольцо развернуто относительно плоскости гетероцикла на 4.8° .

Таблица 1 Кристаллографические данные и детали расшифровки и уточнения структуры комплексов 1 и 2

Параметры	1	2
Брутто-формула	$C_{33}H_{32}CoN_6O_5$	$C_{32}H_{28}CuN_6O_4$
M_r	663,59	624,14
Сингония	Моноклинная	Моноклинная
Пространственная группа	C2/c	$P2_{1}/c$
a (Å)	18,947 (7)	10,225 (3)
b (Å)	8,606 (3)	7,149 (2)
c (Å)	19,093 (7)	20,521 (6)
lpha (град.)	90	90
β (град.)	93,313 (7)	90,526 (5)
ү (град.)	90	90
Z	4	2
$V(\mathring{A}^3)$	3108 (2)	1499,9 (8)
$\mu(\text{mm}^{-1})$	0,61	0,78
d(выч.) (г/см ³)	1,418	1,382
λ (Å)	0,71073	0,71073
Варьирование θ (град)	2,1–29,2	2,8–27,4
Измерено рефлексов	12148	12089
Число независимых отражений	4183	4735
R	0,050	0,037
$R_{\rm w}$	0,169	0,127
GOOF	1,001	0,999
$\Delta \rho$, max., min. (e·Å ⁻³)	0,47; -0,58	0,34; -0,41

Общий вид молекулы координационного соединения $[CuL_2 \cdot 2Py]$ (2) представлен на Puc. 2, наиболее важные длины связей и валентные углы сведены в Табл. 3. Координационный полиэдр меди образован атомами кислорода хелатофорной группировки 3-метил-1-фенил-4-формилпиразолона-5 и атомами азота молекул пиридина и может быть описан как аксиально вытянутая тетрагональная бипирамида.

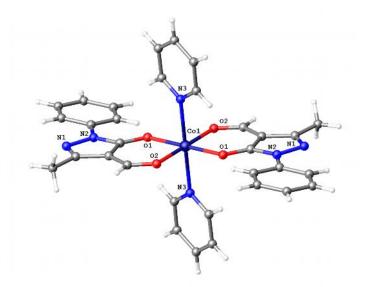


Рис. 1. Общий вид и нумерация атомов комплекса 1.

Таблица 2 Основные длины связей (d) и валентные углы (ω) в молекуле комплекса 1

Связь	d, Å	Угол	ω, град.
Co1—O1 ⁱ	2,0458 (16)	O1 ⁱ —Co1—O1	179,998 (1)
Co1—O1	2,0458 (16)	O1 ⁱ —Co1—O2	88,05 (7)
Co1—O2	2,1005 (18)	O1—Co1—O2	91,95 (7)
Co1—O2 ⁱ	2,1005 (18)	O1 ⁱ —Co1—O2 ⁱ	91,95 (7)
Co1—N3	2,197 (2)	O1—Co1—O2 ⁱ	88,05 (7)
Co1—N3 ⁱ	2,197 (2)	O2—Co1—O2 ⁱ	180,0
O1—C3	1,268 (3)	O1 ⁱ —Co1—N3	89,80 (8)
O2—C4	1,252 (3)	O1—Co1—N3	90,20 (8)
N1—C1	1,295 (4)	O2—Co1—N3	91,10 (8)
N1—N2	1,402 (3)	O2 ⁱ —Co1—N3	88,90 (8)
N2—C3	1,367 (3)	O1 ⁱ —Co1—N3 ⁱ	90,20 (8)
C1—C2	1,428 (3)	O1—Co1—N3 ⁱ	89,80 (8)
C2—C3	1,417 (4)	O2—Co1—N3 ⁱ	88,90 (8)
C2—C4	1,388 (4)	O2 ⁱ —Co1—N3 ⁱ	91,11 (8)
C5—C1	1,489 (4)	N3—Co1—N3 ⁱ	179,999 (1)

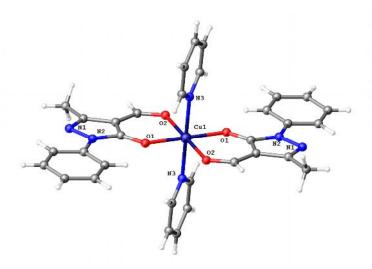


Рис. 3. Общий вид и нумерация атомов комплекса 2.

Таблица 3 Основные длины связей (d) и валентные углы (ω) в молекуле комплекса 2

Связь	d, Å	Угол	ω, град.
Cu1—O1 ⁱ	1,9742 (11)	O1 ⁱ —Cu1—O1	180,0
Cu1—O1	1,9743 (11)	O1 ⁱ —Cu1—N3 ⁱ	90,61 (6)
Cu1—N3 ⁱ	2,0308 (16)	O1—Cu1—N3 ⁱ	89,39 (6)
Cu1—N3	2,0308 (16)	O1 ⁱ —Cu1—N3	89,39 (6)
Cu1—O2i	2,3039 (14)	O1—Cu1—N3	90,61 (6)
Cu1—O2	2,3040 (14)	N3 ⁱ —Cu1—N3	180,0
O1—C1	1,2706 (19)	O1 ⁱ —Cu1—O2 ⁱ	92,52 (5)
O2—C5	1,235 (2)	O1—Cu1—O2 ⁱ	87,48 (5)
C1—C2	1,415 (2)	N3 ⁱ —Cu1—O2 ⁱ	88,88 (6)
C2—C5	1,403 (2)	N3—Cu1—O2 ⁱ	91,12 (6)
C2—C3	1,426 (2)	O1 ⁱ —Cu1—O2	87,48 (5)
C3—C4	1,482 (3)	O1—Cu1—O2	92,52 (5)
N1—C3	1,304 (3)	N3 ⁱ —Cu1—O2	91,12 (6)
N1—N2	1,401 (2)	N3—Cu1—O2	88,88 (6)
N2—C1	1,3747 (19)	O2 ⁱ —Cu1—O2	180,00 (7)

Атомы кислорода экзоциклической карбонильной группы 3-метил-1-фенил-4-формилпиразолона-5 находятся на более удаленном расстоянии от атома меди (2,304 Å), чем другие донорные центры (1,974 Å и 2,031 Å), и занимают аксиальные положения в координационном полиэдре. Атомы кислорода эндоциклических карбонильных групп и атомы азота молекул пиридина формируют экваториальную плоскость тетрагональной бипирамиды.

Связи в хелатных циклах комплекса **2** делокализованы и образуют сопряженную π -систему. Так длины связей углерод-углерод в хелатном узле лиганда (1,403–1,415 Å) соответствуют длинам связи в ароматических структурах (1,394–1,421 Å), длины связей углерод-кислород (1,235–1,271 Å) несколько больше стандартной длины двойной связи (1,215 Å) [9].

вывод

Изучены особенности молекулярного строения комплексов кобальта(II) и меди(II) с 3-метил-1-фенил-4-формилпиразолоном-5 состава [ML_2 ·2Py]. Установлено, что пиразолон координирован в депротонированной енольной форме и образует с металлом шестичленный хелатный цикл с делокализованными связями, типичный для β -дикетонатов

Список литературы

- Marchetti F. Acylpyrazolone ligands: Synthesis, structures, metal coordination chemistry and applications / F. Marchetti, C. Pettinari, R. Pettinari // Coord. Chem. Rev. – 2005. – № 249 – P. 2909–2945.
- Steric effects of polymethylene chain length on the liquid-liquid extraction of copper(II) with bis(4-acylpyrazol-5-one) derivatives / S. Miyazaki, H. Mukai, S. Umetani [et al.] // Inorg. Chem. 1989.

 Pt. 2. No. 28. P. 3014–3017.
- 3. Copper and calcium complexes with the anionic O2-donor 4-tert-butylacetyl-3-methyl-1-phenylpyrazol-5-onato (Q-). Influence of hydrogen-bond interactions on lattice architecture in the crystal structures of [CuQ2(H2O)] and [CaQ2(EtOH)2] / F. Marchetti, C. Pettinari, A. Cingolani [et al.] // J. Chem. Soc. Dalton Trans. 1998. P. 3325–3334.
- 4. Yang L. Synthesis, crystal structure and magnetic properties of novel dinuclear complexes of manganese, cobalt and nickel with 4-acetylbispyrazolone / L. Yang, W. Jin, J. Lin // Polyhedron − 2000. − № 19 − P. 93–98.
- Uzoukwu B.A. Metal(II) Complexes of 4-Acylbis(Pyrazolone-5): Synthesis and Spectroscopic Studies / B.A. Uzoukwu, K. Gloe, H. Duddeck // Synth. React. Inorg. Met. Org. Chem. – 1998. – № 28 – P. 207–221.
- Synthesis and Characterization of Copper(II) and Zinc(II) Complexes Containing 1-Phenyl-3-methyl-4-benzoyl-5-pyrazolone / S.K. Deya, B. Baga, D.K. Dey [et al.] // Naturforsch 2003. Vol. 58 P. 1009–1014.
- 7. Pettinari C. Structure and volatility of copper complexes containing pyrazolyl-based ligands / C. Pettinari, F. Marchetti, C. Santini [et al] // Inorg. Chim. Acta 2001. № 315 P. 88–95.
- 8. Sheldrick G. M. SHELX97. Program for the Solution of Crystal Structures / G. M. Sheldrick. Göttingen University, Göttingen (Germany), 1997.
- 9. Гордон А. Спутник химика / А. Гордон, 3. Форд // М: Мир, 1976. 542 с.
- Tables of lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds / F.H. Allen, O. Kennard, D.G. Watson [et al.] // J. Chem. Soc. Perkin Trans. 2 1987.
 Pt. 2. № 12. P. 1–19.

СИНТЕЗ И ИССЛЕДОВАНИЕ СТРОЕНИЯ КООРДИНАЦИОННЫХ...

Шульгін В.Ф. Синтез та дослідження будови комплексів кобальту(II) і купруму(II) з 3-метил-1-феніл-4-формілпіразолоном-5 / В.Ф. Шульгін, Н.С. Певзнер, О.І. Коншина, О.В. Коннік, Г.Г. Олєксандров, І.Л. Єрьоменко // Вчені записки Таврійського національного університету ім. В.І. Вернадського. Сєрія "Біологія, хімія". -2011. - T. 24 (63), № 1. - C. 225-231.

Описано синтез і результати дослідження молекулярної будови комплексів кобальту(ІІ) і купруму(ІІ) з 3-метил-1-феніл-4-формілпіразолоном-5 методом рентгеноструктурного аналізу.

Ключові слова. кобальт(II), купрум(II), 3-метил-1-феніл-4-формілпіразолон-5, кристалічна структура.

Shul'gin V.F. Synthesis and structure investigation of the cobalt(II) and copper(II) complexes with 3-methyl-1-phenyl-4-formylpirazolon-5 / V.F. Shul'gin, N.S. Pevzner, O.I. Konshina, O.V. Konnic, G.G. Aleksandrov, I.L. Eremenko // Scientific Notes of Taurida V.Vernadsky National University. – Series: Biology, chemistry. – 2011. – Vol. 24 (63), No. 1. – P. 225-231.

The synthesis and the results of molecular investigation of the cobalt(II) and copper(II) complexes with 3-methyl-1-phenyl-4-formylpirazolon-5 were discribed.

Keywords. cobalt(II), copper(II), 3-methyl-1-phenyl-4-formylpirazolon-5, crystal structure.

Поступила в редакцию 20.03.2011 г.