Ученые записки Таврического национального университета им. В. И. Вернадского **Серия** «**Биология**, **химия**». Том 23 (62). 2010. № 4. С. 260-267.

УДК 577.152.193

КАТАЛИТИЧЕСКАЯ АКТИВНОСТЬ ПЕРОКСИДАЗЫ РЕДЬКИ ЧЕРНОЙ ИММОБИЛИЗОВАННОЙ НА БЕНТОНИТЕ В ВОДНЫХ СИСТЕМАХ С ГИДРОХИНОНОМ

Вяткина О.В., Лаврентьева И.В.

Таврический национальный университет им. В.И.Вернадского, Симферополь, Украина E-mail: oksana_vyatkina@list.ru

В статье приведены результаты исследования каталитической активности пероксидазы редьки черной иммобилизованной на бентоните в водных системах с гидрохиноном. Показано, что иммобилизация пероксидазы редьки черной на бентоните увеличивает ее активность в реакции окисления гидрохинона в 2 раза по сравнению с нативным ферментом, максимальную скорость реакции – в 4,8 раза, при этом повышается рН и термостабильность фермента, что обуславливает возможность его широкого применения в первую очередь в различных схемах водоочистки.

Ключевые слова: пероксидаза, бентонит, гидрохинон, пероксид водорода.

ВВЕДЕНИЕ

Ферменты — это специфические катализаторы белковой природы, вырабатываемые клетками и тканями организмов [1]. Практическое применение ферментов основано на их высокой каталитической активности и субстратной специфичности [2], что делает задачу поиска новых источников ферментов и создание новых каталитически активных материалов на их основе задачей актуальной.

Классическая пероксидаза — двухсубстратный фермент класса оксидоредуктаз, проявляющий высокую специфичность в отношении окислителя — пероксида водорода. Среди субстратов пероксидазы встречаются вещества различной природы, но одними из наиболее легко окисляемых являются фенолы [1, 3-5].

Известно, что наиболее перспективным источником пероксидазы является относительно дешевое и широко распространенное растительное сырье. Однако недостатком нативных ферментных препаратов является проявление каталитической активности в узких диапазонах рН и температур, а также существенная потеря активности в течении первых 2 часов хранения на открытом воздухе [6].

Одним из способов повышения активности и устойчивости растительных пероксидаз является их иммобилизация на водонерастворимых подложках, в качестве которых используют широкий спектр различных материалов, в частности: графит [7], пленки биополимеров [8, 9], глинистые материалы [10]. Существует

несколько принципиально различных подходов, позволяющих связать фермент с носителем. Наиболее прост в реализации адсорбционный метод. Поэтому целью нашей работы было исследование каталитической активности пероксидазы редьки черной иммобилизованной на бентоните в реакции окисления гидрохинона при различных условиях.

МАТЕРИАЛЫ И МЕТОДЫ

Объектом исследования являлась пероксидаза корнеплодов редьки черной. Для получения экстракта растительное сырье подвергли очистке стандартным методом [11] и измельчили на пластмассовой терке. Экстракцию проводили фосфатным буфером рН - 7,0.

Исследования проводили относительно фенольного субстрата – гидрохинона. В качестве водонерастворимой подложки для иммобилизации фермента был использован бентонит Асканского месторождения (Грузия).

Сорбцию пероксидазы из фосфатно-буферного раствора на бентоните изучали в статических условиях при температуре 25° C в течении 2 часов. Остаточное содержание фермента в растворе определяли спектрофотометрически (λ =400 нм) [2].

Каталитическую активность нативной и иммобилизованной на бентоните пероксидазы редьки черной в реакции окисления гидрохинона ($C_6H_4(OH)_2$) изучали в водных растворах в присутствии пероксида водорода (H_2O_2) при температуре 25 °C. Исследования проводили в следующих системах: гомогенная система I: 3 мл 3% раствора H_2O_2 , 50 мл раствора $C_6H_4(OH)_2$, 7 мл ферментного препарата; гетерогенная система II: 2,5 мл 3% раствора H_2O_2 , 50 мл раствора $C_6H_4(OH)_2$, 5 г модифицированного бентонита ($C(H_2O_2)=0.05$ моль/л, концентрации растворов $C_6H_4(OH)_2$ варьировали от 0,046 ммоль/л до 0,91 ммоль/л, содержание пероксидазы в 5 г бентонита эквивалентно 7 мл нативного фермента).

Для расчета максимальной скорости ферментативной реакции (w_{max}) и константы Михаэлиса (K_{M}) определяли начальные скорости окисления пирогаллола в системах (I и II) при различных начальных концентрациях гидрохинона $(\Delta \tau = 10 \text{мин})$. Также в системе (I) варьировали концентрацию пероксида водорода. Реакцию окисления гидрохинона останавливали введением в систему 2М H_2SO_4 .

Изменение концентрации гидрохинона в исследуемых системах контролировали фотоколориметрическим методом по реакции с о-фенантролином в присутствии ионов Fe³⁺ [12]. Указанные кинетические параметры вычисляли графическим методом в координатах Лайнуивера — Берка [13].

Определение средней пероксидазной активности ферментного препарата проводили в системах: гомогенная система III: С $(H_2O_2)=0.05$ моль/л, С $(C_6H_4(OH)_2)=0.38$ ммоль/л, V $(C_6H_4(OH)_2)=50$ мл, нативный ферментный препарат; гетерогенная система IV: С $(H_2O_2)=0.05$ моль/л, С $(C_6H_4(OH)_2)=0.43$ ммоль/л, V $(C_6H_4(OH)_2)=50$ мл, модифицированный бентонит. (V $(\phi$. преп.)=3,5; 7; 10,5 мл.; м (бентонита)=2,5; 5; 7,5 г.).

За единицу активности принимали количество окисленного субстрата (мкМ), катализированное 1 мл ферментного препарата в течение 1 мин. Также критерием,

характеризующим активность нативного и иммобилизованного ферментов считали степень конверсии гидрохинона в исследуемых системах (α , %)

Для изучения влияния pH и температуры на активность нативного и иммобилизованного на бентоните фермента использовали системы: гомогенная система V: С (H_2O_2)=0,05 моль/л, С(C_6H_4 (OH)₂)=0,38 ммоль/л, V(C_6H_4 (OH)₂)=50 мл, V(C_6H_4 (OH)₂)=50 мл; гетерогенная система VI: С (H_2O_2)=0,05 моль/л, С(C_6H_4 (OH)₂)=0,43 ммоль/л, V(C_6H_4 (OH)₂)=50 мл, m (бентонита)=5 г. Температуру варьировали от 0°C до 100°C. pH – от 0 до 12.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В ходе эксперимента было установлено, что начальная скорость окисления гидрохинона зависит от концентрации пероксида водорода (рис. 1). Причем при концентрации (H_2O_2) = 0,05 моль/л в гомогенной системе (I) скорость окисления гидрохинона максимальна.

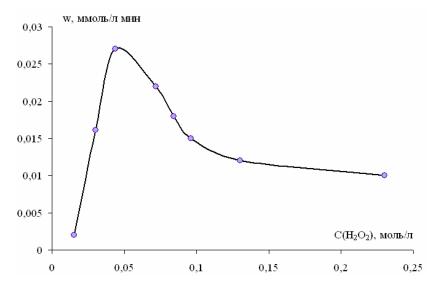


Рис. 1. Зависимость начальной скорости окисления гидрохинона в системе (I) от концентрации пероксида водорода (H_2O_2).

Снижение начальной скорости исследуемого процесса очевидно связано с образованием в избытке пероксида водорода промежуточной формы фермента, не проявляющей каталитической активности в реакциях окисления фенольных субстратов [2, 5]. Поэтому при проведении дальнейших исследований концентрация пероксида водорода в каталитических системах составляла 0,05 моль/л.

При определении удельной активности \overline{A} пероксидазы в системах (III), (IV) относительно субстрата гидрохинона были получены данные, представленные в Таблице 1., из которой следует, что при иммобилизации фермента на бентоните его удельная активность возрастает в 2 раза относительно нативного препарата.

Таблица 1 Ферментная активность препаратов нативной и иммобилизованной на бентоните пероксидазы редьки черной

Гомогенная система (III)			Гетерогенная система (IV)		
V (фермента) мл	С _{нач} (С ₆ H ₄ (OH) ₂) ммоль/л	A e.a	т бентонита г	С _{нач} (С ₆ H ₄ (OH) ₂) ммоль/л	A e.a
3,5 7 10,5	0,38	0,1±0,006	2,5 5 7,5	0,43	0,2±0,004

В ходе кинетических исследований в системах (I) и (II) были определены начальные скорости и степень конверсии гидрохинона, данные показаны в Таблице 2. Было установлено, что при $t=25^{\circ}\mathrm{C}$ и различных начальных концентрациях гидрохинона степень его конверсии в гомогенной системе варьировалась от 20% до 55,7%, а в гетерогенной системе с бентонитом, модифицированным пероксидазой от 34,6% – до 77%.

Таблица 2 Средняя скорость и степень конверсии гидрохинона в каталитических системах с нативной и иммобилизованной на бентоните пероксидазой редьки черной

Гомогенная система (I)			Гетерогенная система (II)				
$C_{\rm Hav}$ $C_6H_4({ m OH})_2$ MMOJIБ/JI	$C_{\rm KOH}$ $C_6H_4({\rm OH})_2$ MMOJIБ/JI	w, ммоль/л мин	Степень конверсии С ₆ Н ₄ (ОН) ₂ α, %	$C_{\rm Haq}$ $C_6H_4({\rm OH})_2$ MMOJIБ/JI	$C_{\rm KOH}$ $C_6H_4({\rm OH})_2$ MMOJIЬ/JI	w, ммоль/л мин	Степень конверсии С ₆ Н ₄ (ОН) ₂ α, %
0,08	0,05	0,003	37,5	0,10	0,046	0,0054	54,0
0,23	0,16	0,007	30,4	0,26	0,17	0,009	34,6
0,38	0,27	0,011	29,9	0,43	0,14	0,029	68,4
0,61	0,27	0,034	55,7	0,69	0,23	0,046	66,6
0,76	0,39	0,037	48,7	0,87	0,20	0,067	77,0

Значительное повышение степени конверсии гидрохинона в гетерогенной системе, по-видимому, связано как непосредственно с увеличением активности пероксидазы в следствие ограниченния возможности для конформационных перестроек и более быстрого нахождения кратчайшего пути к функционально активной конформации, так и с каталитической активностью самого бентонита в водных системах с пероксидом водорода [14, 15] и его сорбционным сродством к гидрохинону [16].

По данным представленным в Таблице 2 были построены графические зависимости в координатах Лайнуивера — Берка, были рассчитаны кинетические параметры ферментативных реакций в исследуемых системах (табл. 3)

Таблица 3 Кинетические параметры процесса окисления гидрохинона нативной и иммобилизованной на бентоните пероксидазой редьки черной

	К _м , мкМоль/л	w _{max} , мкМоль/л·мин
гомогенная система (I)	6,59•10 ³	0,244•10 ³
Гетерогенная система (II)	22,50•10 ³	1,166•10 ³

Эксперимент показал, что в случае использования пероксидазы иммобилизованной на бентоните максимальная скорость реакции увеличивается в 4,8 раза по сравнению с системой содержащей нативный фермент, что подтверждает увеличение количества каталитических центров в системе в том числе и за счет активных центров бентонита [15].

Значительное возрастание константы Михаэлиса в гетерогенной системе по сравнению с гомогенной говорит о меньшей специфичности пероксидазы иммобилизованной на бентоните в отношении фенольных субстратов по сравнению с нативным ферментом, что, однако является положительным показателем при использовании данного материала в очистке водных систем содержащих сумму различных фенольных веществ.

Влияние температуры на скорость окисления гидрохинона в системах (V) и (VI) оценивали по степени конверсии субстрата, данные эксперимента представлены на Рисунке 2.

Как видно из Рисунка 2. максимальной активностью нативная пероксидаза обладает в интервале температур от 20°C до 40°C. Оптимальной является температура 30°C при которой степень конверсии гидрохинона в системе составила 45%. Температурная зависимость активности пероксидазы иммобилизованной на бентоните имеет несколько иной характер: Высокие степени конверсии от 60 до 100% сохраняются в широком диапазоне температур от 10°C до 70°C, откуда

следует, что иммобилизация пероксидазы на водонерастворимой подложке делает ее более устойчивой к температурной денатурации.

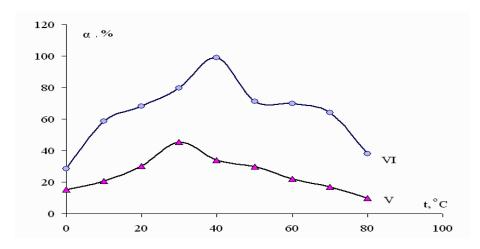


Рис. 2. Зависимость степени конверсии гидрохинона (α) от температуры в гомогенной и гетерогенной каталитических системах (V), (VI).

Результаты изучения влияния pH на кинетику конверсии гидрохинона в исследуемых системах представлены на Рисунке 3.

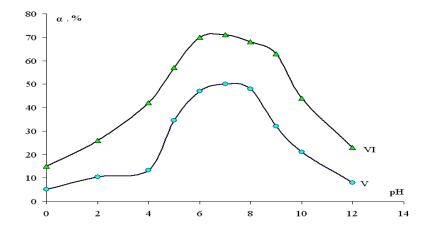


Рис. 3. Зависимость степени конверсии гидрохинона (α) от рН в гомогенной и гетерогенной каталитических системах (V), (VI).

Представленные зависимости свидетельствуют о расширении диапазона оптимума рН в системе VI при использовании пероксидазы иммобилизованной на бентоните от 6 до 10 по сравнению с нативной пероксидазой в систме V (оптимум

рН 6-8). При этом степень конверсии в указанных интервалах рН в гетерогенной системе в среднем на 20% выше чем гомогенной.

Таким образом, иммобилизация пероксидазы редьки черной на бентоните повышает активность фермента, улучшает его кинетические характеристики в реакции окисления гидрохинона и увеличивает его рН и термостабильность, что обуславливает возможность его широкого применения в первую очередь в различных схемах водоочистки.

выводы

- 1. Установлено, что оптимальными условиями иммобилизации пероксидазы редьки черной на бентоните при температуре 25 °C являются исходная объемная концентрация фермента 20% и время контакта 1,5 часа, при этом степень связывания фермента 70 об.%
- 2. Определено, что пероксид водорода в концентрациях превышающих 0,05 моль/л ингибирует окисление гидрохинона в присутствии пероксидазы редьки черной.
- 3. Выявлено, что иммобилизация пероксидазы редьки черной на бентоните увеличивает ее активность в реакции окисления гидрохинона в 2 раза по сравнению с нативным ферментом, при этом максимальная скорость реакции увеличивается в 4,8 раза, а константа Михаэлиса в 3,4 раза.
- 4. Установлено, что оптимальными для использования пероксидазы редьки черной иммобилизованной на бентоните в реакции окисления гидрохинона является температура 40°C и рН=7.

Список литературы

- 1. Рогожин В.В. Пероксидаза как компонент антиоксидантной системы живых организмов / Рогожин В.В. М. : ГИАРД, 2004. 240 с.
- Андреева В.А. Фермент пероксидаза / В.А. Андреева М.: Наука, 1988. С.54–55.
- 3. Эйхгорн Г. Неорганическая биохимия / Эйхгорн Г. Т.2; пер.с англ. под. ред. М.Е. Вольпина, К.Б. Яцимирского. М.: Мир.1978.– С. 23–34.
- 4. Куприянович Ю.Н. Ферменткатализируемое окисление замещенных фенолов : автореф. дис. канд. хим. наук: 02.00.03 / Ю.Н. Куприянович ИрИХ СО РАН им. А. Е. Фаворского. Иркутск, 2009. 18 с.
- Айзенштадт М.А. Пероксидазное окисление лигнина и его модельных соединений / М.А. Айзенштадт, К.Г. Боголицын // Химия растительного сырья. – 2009. – №2. – С.5–18.
- 6. Куряева Е.В. Окислительная активность пероксидазы корнеплодов редьки черной относительно фенольного субстрата / Е.В. Куряева, О.В. Вяткина // Материалы Всеукраинской научной конференции «Мониторинг природных и техногенных сред». Симферополь. 2008. С.40—42.
- 7. Супрун Е.В. Пероксидазные и холинэстеразные сенсоры на основе модифицированных графитовых электродов : автореф. канд. хим наук: 02.00.02 / Е.В. Супрун Казанский государственный университет. Казань, 2001. 19 с.
- 8. Веселова И.А. Повышение каталитической активности и стабильности пероксидазы хрена за счет включения её в полиэлектролитный комплекс с хитозаном / И.А. Веселова, А.В. Кирейко, Т.Н. Шеховцова // Прикладная биохимия и микробиология. 2009. Т. 45, № 2. С.142–148.
- 9. Преображенская Ю.В. Иммобилизация хлоридпероксидазы из Serratia marcescens в белковых полупроницаемых пленках / Ю.В. Преображенская, Ю.А. Богдевич, В.Н. Бурдь // Прикл. Биохим. и микробиол. − 2006. − Т. 42, № 2. − С. 152–155.
- 10. Вяткина О.В. Окислительная активность пероксидазы хрена, иммобилизованной на бентоните / О.В.

КАТАЛИТИЧЕСКАЯ АКТИВНОСТЬ ПЕРОКСИДАЗЫ РЕДЬКИ ЧЕРНОЙ...

- Вяткина, Е.В. Куряева, О.С. Ботнарь // Актуальные вопросы теоретической и прикладной физики и биофизики «Физика. Биофизика 2007». Материалы Третьей всеукраинской научно-технической конференции студентов, аспирантов и молодых ученых. Севастополь. 2007. С. 48–49.
- 11. Селибер Г.Л. Большой практикум по микробиологии / Г.Л. Селибер. М.: Мир, 1962. 492 с
- 12. Лурье Ю.Ю. Химический анализ производственных сточных вод / Ю.Ю. Лурье, А. И. Рыбников. М.: Химия, 1974. 395 с.
- 13. Багирова Н.А. Кинетика и катализ / Н.А. Багирова, Т.Н. Шеховцова. М.: Наука, 1999. С. 625.
- Березин И.В. Иммобилизованные ферменты / И.В. Березин, Н.Л. Клячко, А.В. Левашов. М.: Мир, 1987. – С. 85–92.
- 15. Вяткина О.В. Природа кислото-основной и каталитической активности монтмориллонита в водной среде / О.В. Вяткина, Е.Д. Першина, К.А. Каздобин // Украинский химический журнал. 2006. Т 72, №7–8. С.19–24.
- 16. Першина К.Д. Використання систем H_2O_2 бентоніт для очищення стічних вод від фенолів / К.Д. Першина, О.В. Вяткіна // Вісник Львів. Ун-ту. 2005. Вип. 46. С. 140–147.

Вяткіна О.В. Каталітична активність пероксидази редьки чорної іммобілізованної на бентоніті у водних системах з гідрохіном / О.В. Вяткіна, І.В. Лаврентьєва // Вчені записки Таврійського національного університету ім. В.І. Вернадського. Сєрія "Біологія, хімія". — 2010. — Т. 23 (62), № 4. — С. 260-267

В статті наведені результаті дослідження каталітичної активності пероксидази редьки чорної, що іммобілізована на бентоніті, в водних системах з гідрохіноном. Показано, що іммобілізація пероксидази редьки чорної на бентоніті підвищує її активність у реакціях окиснення гідрохінону в 2 рази порівняно з нативним ферментом, максимальну швидкість реакції — в 4, 8 разів, при цьому зростає рН та термостабільність ферменту, що обумовлює можливість його широкого використання в першу чергу у різноманітних системах водоочищення.

Ключові слова: пероксидаза, бентоніт, гідрохінон, пероксид водню.

Vyatkina O.V. Catalitic activity of peroxidase of a radish black is immobilized on bentonite in water systems with Hydroquinone / O.V. Vyatkina, I.V. Lavrentieva // Scientific Notes of Taurida V. Vernadsky National University. – Series: Biology, chemistry. – 2010. – Vol. 23 (62), No. 4. – P. 260-267.

In article results of research of catalytic activity of a peroxidase of a radish black is immobilized on bentonite in water systems with Hydroquinone are resulted. It is shown that the immobilization of a peroxidase of a radish black on bentonite increases its activity in oxidation reaction of hydroquinone in 2 times in comparison with native enzyme, the maximum speed of reaction - in 4,8 times, thus pH and thermostability of enzyme raises. It causes possibility of its wide application in the diverse schemes of water purification.

Keywords: peroxidase, bentonite, Hydroquinone, hydrogen peroxide.

Поступила в редакцию 21.11.2010 г.