Ученые записки Таврического национального университета им. В. И. Вернадского Серия «Биология, химия». Том 25 (64). 2012. № 2. С. 252-258.

УДК 548.736:546.47:54.057

СИНТЕЗ И ИССЛЕДОВАНИЕ МОЛЕКУЛЯРНО-КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЫ КООРДИНАЦИОННОГО ПОЛИМЕРА ХЛОРИДА ЦИНКА С 4,4,10,10-ТЕТРАМЕТИЛ-1,3,7,9-ТЕТРААЗОСПИРО[5.5]УНДЕКАН-2,8-ДИОНОМ (СПИРОКАРБОНОМ – Sk)

Нетреба Е.Е., Федоренко А.М.

Таврический национальный университет им. В.И. Вернадского, Симферополь, Украина E-mail: evgtnu@gmail.com

Впервые синтезирован координационный полимер $\{[ZnCl_2(C_{11}H_{20}N_4O_2)]\}_n$ и определена его структура. Кристаллы моноклинные: пр. гр. P2₁, a = 6,2121(17) Å, b = 11,276(3) Å, c = 11,387(3) Å, $\beta = 94,99(3)^\circ$, V = 794,6(3) Å³, d_{выч} = 1,574 г/см³, Z = 2. Координационный полиэдр цинка представляет собой тетраэдр в вершинах которого расположены два атома хлора и карбонильные атомы кислорода O1 и O2 двух молекул органического лиганда связанных между собой операцией симметрии [2-z,1/2+y,2-z]. Валентные углы, центрированные на атоме цинка варьируются в диапазоне 101.05(12)-122.13(9)°. Расстояние Zn...Zn в полимере составляет 9,48 Å. Молекулы в координационных полимерах дополнительно связаны между собой межмолекулярными водородными связями N2-H2...O2ⁱ [i: 2x,1/2+y,2-z] (H...O 2,17 Å, N-H...O 147°) и N4-H4...Cl2ⁱⁱ [ii: 1-x,-1/2+y,2-z] (H...Cl 2,48 Å, N-H...Cl 159°). Цепочки связаны в слои вдоль плоскости (0 0 1) межмолекулярными водородными связями N1-H1...Cl1ⁱⁱⁱ [iii: 1-x,-1/2+y,2-z] (H...Cl 2,78 Å, N-H...Cl 148°).

Ключевые слова: цинк(II), спирокарбон, координационный полимер, структура, РСА.

введение

Координационные полимеры с лигандами в виде циклических спиробисмочевин, относятся к классу практически не изученных веществ. Одним из таких лигандов является 4,4,10,10-тетраметил-1,3,7,9-тетра-азоспиро[5.5]ундекан-2,8-дион, или спирокарбон (Sk):

Данное вещество, как предшественник мочевины обладает рядом ценных биологических свойств: низкий уровень токсичности, $LD_{50} = 3000$ мг/кг [1], проявляет мембранотропность [2], способно проходить и накапливаться в цитоплазме лейкозных клеток линий L1210 и CEM-T4, мыши и человека соответственно [3]. Так же оно способствует повышению количества белка и

снижению крахмалистости в зерне овса [4]. В работе [5] доказана эффективность применения спирокарбона, как стимулятора каллюсообразования у Форзиции европейской, и стимулятора корнеобразования у Чубушника венечного. Автор Козычар М.В. в работе [6] показывает эффективность применения спирокарбона, как стимулятора роста и развития в овцеводстве. Поэтому получение и изучения координационных соединений данного лиганда позволит, пояснит более полно химизм взаимодействия Sk с ионами металлов, позволит предполагать его биохимические особенности в условиях *in vitro* и *in vivo*, а также получить вещества с новыми ценными свойства для различных сфер.

Цель настоящей работы – получение координационного полимера хлорида цинка с молекулами спирокарбона - $[ZnCl_2(C_{11}H_{20}N_4O_2)]_N$ (I) и определение его структуры.

МАТЕРИАЛЫ И МЕТОДЫ

Синтез. Для получения I использовали безводный ZnCl₂ («х.ч.»), 4,4,10,10тетраметил-1,3,7,9-тетраазоспиро[5.5]ундекан-2,8-дион (спирокарбон – Sk), полученный по методике [7] и ацетон («осч.»). Для этого 1,2 г (8,8 ммоль) хлорида цинка растворяли в 10 мл ацетона, затем вносили 1,49 г (6,2 ммоль) спирокарбона и 5-10 минут перемешивали на магнитной мешалке. Полученный раствор фильтровали, и выдерживали несколько часов до испарения 1/3 растворителя и формирования кристаллов. Выделившиеся кристаллы белого цвета отфильтровывали, промывали ацетоном и сушили на воздухе. Выход по лиганду ~ 93%.

Элементный анализ для определения С, Н, N проведен по методикам [8].

Найдено, %: С 35,12; Н 5,96; N 14,51. Для [ZnCl₂(C₁₁H₂₀N₄O₂)]_n вычислено, % С 35,08; Н 5,35; N 14,88.

ИК-спектры исходных реагентов и синтезированного координационного полимера I записывались на спектрофотометре Specord-75IR в области 400-4000 см⁻¹ (суспензия в вазелиновом масле).

РСА. Экспериментальные данные для монокристаллов **I** получены на автоматическом четырехкружном дифрактометре «Xcalibur 3». Структура расшифрована прямым методом по комплексу программ SHELX-97 [9]. Положения атомов водорода рассчитаны геометрически и уточнены по модели наездника с $U_{_{H30}}=nU_{_{3KB}}$ несущего атома (n=1,5 для воды и метильных групп, n=1,2 для остальных атомов водорода). Структура уточнена по F^2 полноматричным МНК в анизотропном приближении для неводородных атомов до wR₂ = 0,102 по 2859 отражениям (R₁ = 0,053 по 2228 отражениям с F>4 σ (F), S = 0,99).

Основные характеристики эксперимента и параметры элементарной ячейки приведены в табл. 1. Координаты атомов и другие параметры структуры **I** депонированы в Кембриджском банке структурных данных (ССDC № 877812).

Таблица 1.

Таблица 2.

Основные кристаллографические данные и характеристики эксперимента для структуры I

Параметры	Значения	Параметры	Значения
M_r	376,58	μ(МоК _α), мм ⁻¹	1,887
Сингония	Моноклинная	F(000)	388
Пр. гр.	P21	Температура съемки, К	298
Параметры		Излучение (λ, Å)	ΜοΚα,
ячейки:		•	графитовый
			монохроматор
<i>a</i> , Å	6,2121(17)	Тип сканирования	ω
<i>b</i> , Å	11,276(3)	2θ _{макс} , □	57,58
<i>c</i> , Å	11,387(3)	R-фактор, %	5,3
β, •	94,99(3)	Общее число	4950 / 2859
		отражений/независимых	$(R_{int} = 0,058)$
V , Å ³	794,6(3)	Число отражениям с	2228
		$F > 4\sigma(F), S = 0.99$	
Ζ	2	R (все данные)	$R_1 = 0,053, wR_2 =$
_			0,102
d _{выч} , г/см ³	1,574		

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В ИК-спектрах соединения I и лиганда наблюдаются следующие полосы, табл. 2:

v, см⁻¹ Sk·H₂O Соединение І v_s(H-O-H), 3480 _ vas(H-O-H) $v_s(N-H)$, $v_{as}(N-H)$ 3320, 3280, 3180 3050 3300 v(C=O, амид I) 1640 1620 $v(C-N) + \delta(CH_3)$ 1450, 1415 1460, 1410 1250,1210, 1260, 1190 $v_{as}(C-O) + \delta(C-H)$ 1120 v_γ(скелетные колебания 1090, 1010, 820, 770, 1010, 950, 840, 750, 630, кольца), γ(-СН₂-) и δ(=С-Н) 750, 620 600 δ (амид III) + π (C=O, выход из 590 560 плоскости цикла) δ_ν(скелетные колебания 490 500 кольца)

Основные полосы поглощения для лиганда Sk и полученного соединения I

Как видно при сравнении валентных колебаний ν (C=O, амид I) происходит смещение на 20 см⁻¹ в дальнюю область из-за координирования, так же смещение в

ближнюю область v_s (N-H), v_{as} (N-H), что характерно для аминогрупп при координированном карбониле [10]. На спектре отсутствует полоса поглощения v(H-O-H), что свидетельствует об отсутствии воды в исследуемом **I**.

Соединение І представляет собой кристаллит координационного полимера {[ZnCl₂(C₁₁H₂₀N₄O₂)]}_n. Координационный полиэдр цинка представляет собой тетраэдр в вершинах которого расположены два атома хлора и карбонильные атомы кислорода О1 и О2 двух молекул органического лиганда связанных между собой операцией симметрии [2-z,1/2+y,2-z]. Валентные углы, центрированные на атоме цинка варьируются в диапазоне 101,05(12)-122,13(9)°. Расстояние Zn...Zn в полимере составляет 9,48 Å (рис. 1, табл. 3-4). Шестичленные гетероциклы находятся в конформации асимметричное полукресло с заметно скрученными фрагментами N2-C1-N1-C4 и N4-C7-N3-C4 (торсионные углы 21,4(10)° и 22,4(10)°) и отклонениями атомов С2, С3 и С8, С9 от средних плоскостей этих фрагментов на -0,41(1) Å, 0,26(1) Å и 0,45(1) Å, -0,22(1) Å, соответственно. При этом не наблюдается возникновения укороченных внутримолекулярных контактов между метиленовой и метильной группами двух циклов. Связи С-О заметно удлинены до 1,27 Å по сравнению со средним значением для мочевин 1,24 Å [11] вследствие координации на атом металла. Интересно отметить, что не наблюдается более сильного сопряжения карбонильной группы с одним из атомов азота мочевинного фрагмента, о чем свидетельствует близость длин связей N-C(=O) 1,328(8)-1,344(8) Å.

Рис. 1. Строение соединения I по данным рентгеноструктурного исследования.

Молекулы в координационных полимерах дополнительно связаны между собой межмолекулярными водородными связями N2-H2...O2ⁱ [i: 2-x,1/2+y,2-z] (H...O

2,17Å, N-H...O 147°) и N4-H4...Cl2ⁱⁱ [ii: 1-x,-1/2+y,2-z] (H...Cl 2,48Å, N-H...Cl 159°). Цепочки связаны в слои вдоль плоскости (0 0 1) межмолекулярными водородными связями N1-H1...Cl1ⁱⁱⁱ [iii: 1-x,-1/2+y,2-z] (H...Cl 2,78 Å, N-H...Cl 148°) (рис. 2).

Таблица 3.

Длины с	вязей (Å)	В	структуре І	ļ
---------	-----------	---	-------------	---

Связь	Длина, Å	Связь	Длина, Å	Связь	Длина, Å
Zn1-Cl1	2,2165(18)	N1-C4	1,468(8)	C2-C5	1,519(9)
Zn1-Cl2	2,223(2)	N2-C1	1,328(8)	C2-C6	1,511(8)
Zn1-O1	1,979(5)	N2-C2	1,486(8)	C3-C4	1,544(10)
$Zn1-O2^1$	2,028(4)	N3-C4	1,478(8)	C4-C9	1,555(9)
O1-C1	1,273(8)	N3-C7	1,331(8)	C8-C9	1,523(9)
$O2-Zn1^2$	2,028(4)	N4-C7	1,329(7)	C8-C10	1,510(8)
O2-C7	1,273(7)	N4-C8	1,470(7)	C8-C11	1,515(9)
N1-C1	1,344(8)	C2-C3	1,523(9)		
N1-C1	1,275(7) 1,344(8)	C2-C3	1,470(7) 1,523(9)	Co-C11	1,315

Операции симметрии: ¹[2-х, 1/2+у, 2-z]; ²[2-х, -1/2+у, 2-z].

Таблица 4.

Валентные углы (град.) в структуре I

Фрагмент	Угол, 🗆	Фрагмент	Угол, 🗆
Cl1-Zn1-Cl2	122,13(9)	C6-C2-C3	115,4(6)
O1-Zn1-Cl1	105,20(15)	C6-C2-C5	110,2(6)
O1-Zn1-Cl2	112,42(15)	C2-C3-C4	116,1(5)
$O1-Zn1-O2^1$	103,52(19)	N1-C4-N3	107,2(5)
O2 ¹ -Zn1-Cl1	101,05(12)	N1-C4-C3	108,7(5)
O2 ¹ -Zn1-Cl2	110,50(13)	N1-C4-C9	107,7(5)
C1-O1-Zn1	126,0(4)	N3-C4-C3	108,4(5)
$C7-O2-Zn1^2$	130,9(4)	N3-C4-C9	108,6(5)
C1-N1-C4	126,5(6)	C3-C4-C9	116,0(5)
C1-N2-C2	124,0(6)	O2-C7-N3	119,1(6)
C7-N3-C4	126,1(5)	O2-C7-N4	122,2(6)
C7-N4-C8	123,8(5)	N4-C7-N3	118,5(5)
O1-C1-N1	117,8(6)	N4-C8-C9	106,5(5)
O1-C1-N2	124,1(7)	N4-C8-C10	109,3(5)
N2-C1-N1	118,1(7)	N4-C8-C11	108,7(5)
N2-C2-C3	106,0(5)	C10-C8-C9	109,0(6)
N2-C2-C5	106,7(6)	C10-C8-C11	110,3(6)
N2-C2-C6	108,4(6)	C11-C8-C9	113,0(6)
C5-C2-C3	109,7(6)	C8-C9-C4	115,9(5)
1		•	

Операции симметрии: ¹[2-х, 1/2+у, 2-z]; ²[2-х, -1/2+у, 2-z].

Рис. 2. Общий вид структуры вдоль направления [001].

вывод

Синтезирован координационный полимер хлорида цинка(II) с 4,4,10,10тетраметил-1,3,7,9-тетраазоспиро[5.5]ундекан-2,8-дионом или спирокарбоном (Sk).

По полученным данным метода прямого рентгеноструктурного анализа спирокарбон является монодентатным лигандом в среде ацетона по каждому кислороду карбонильных групп и за счёт симметричного строения склонен образовывать координационные полимеры.

Список литературы

- 1. Трибрат Т.П. Влияние биологически активных веществ на рост и яичную продуктивность птицы кросса «Хайсекс браун» / Т.П. Трибрат, В.А. Ересько // Матер. Всеукр. науч.-практ. конф. Херсон, 1994 г. Харьков: Изд-во ХНТУ, 1994. С. 101–106.
- Дослідження впливу спірокарбону та похідних піролопіримідиндіонів на лейкозні клітини / Л.С. Старикович, М.А. Старикович, А.Н. Речицкий [и др.] // Біологічні студії / studia biologica. – 2009. – Т. 3, № 2. – С. 93–98.
- 3. Исследование влияния спирокарбона на физико-химические и биохимические характеристики эритроцитов крыс в норме и при алкогольной интоксикации / Л.С. Старикович, Е.П. Дудок, Н.А. Сибирная [и др.] // Медична хімія. 2009. Т. 11, № 1. С. 57–62.
- Факторы оптимизации формирования продуктивности растений и качества зерна ярового ячменя и овса / А.Г. Мусатов, А.А. Семяшкина, Р.Ф. Дашевский // Хранение и переработка зерна. – 2007. № 7. – С. 38–41.

- 5. Гуревич А.С. Применение стимуляторов корнеобразования для окоренения черенков декоративных древесных и кустарниковых пород / А.С. Гуревич, В.А. Титов, Э.В. Бабаева [и др.] // «Интродукция, акклиматизация и культивация растений»: Сб. науч. тр. Калининград: Изд-во Калинингр. ун-та, 1998. – С. 30–50.
- Козичар М.В. Приемы повышения шерстяной продуктивности овец асканийской тонкорунной 6. породы: Дис... канд. с.-г. наук: спец. 06.02.04 / М.В. Козичар. - Херсон, 1998. - 16 с.
- 7. Синтез и исследование молекулярно-кристаллической структуры 4,4,10,10-тетраметил-1,3,7,9тетраазоспиро[5.5]ундекан-2,8-диона (спирокарбона - Sk) / Е.Е. Нетреба, А.М. Федоренко, А.А. Павлов // Наук. вісник Ужгород. ун-ту (Сер. Хімія). – 2011. – № 1(25). – С. 107–115.
- 8. Основы микрометодов анализа органических соединений / [В.А. Климова]. – М.: Химия, 1975. – 215 с.
- Foundations of Crystallography / G.M. Sheldrick // Acta Crystallographica Section A. 2008. Vol. 64. 9. – P. 112–122.
- 10. Введение в колебательную спектроскопию неорганических соединений / [А.И. Григорьев]. -Москва: Изд-во МГУ, 1977. - 118 с.
- 11. Structure correlation / H.B. Burgi, J.D. Dunitz // VCH. Weinheim. 1994. Vol. 2. P. 741-784.

Нетреба Є.Є. Синтез та дослідження молекулярно-кристалічної структури координаційного полімеру хлориду цинку з 4,4,10,10-тетраметил-1,3,7,9-тетраазоспіро[5.5]ундекан-2,8-діоном (спірокарбоном – Sk) / Є.Є. Нетреба, О.М. Федоренко // Вчені записки Таврійського національного університету ім. В.І. Вернадського. Сєрія "Біологія, хімія". - 2012. - Т. 25 (64), № 2. - С. 252-258. Уперше синтезовано координаційний полімер {[ZnCl₂(C₁₁H₂₀N₄O₂)]}_n та визначена його структура. Кристали моноклінні: пр. гр. Р2₁, *a* = 6,2121(17) Å, *b* = 11,276(3) Å, *c* = 11,387(3) Å, *β* = 94,99(3), V = 794,6(3) Å³, d_{роз} = 1,574 г/см³, Z = 2. Координаційний поліедр цинку являє собою тетраедр у вершинах якого розташовано два атоми хлору й карбонільні атоми кисню О1 та О2 двох молекул органічного лиганда зв'язаних між собою операцією симетрією [2-z,1/2+y,2-z]. Валентні кути, центровані на атомі цинку варіюють в діапазоні 101,05(12)-122,13(9)°. Відстань Zn...Zn у полімері становить 9,48 Å. Молекули в координаційних полімерах додатково зв'язані між собою міжмолекулярними водневими зв'язками N2-H2...O2¹ [i: 2-x,1/2+y,2-z] (H...O 2,17 Å, N-H...O 147°) і N4-H4...Cl2ⁱⁱ [ii: 1-x,-1/2+y,2-z] (H...Cl 2,48 Å, N-H...Cl 159°). Ланцюжки зв'язані в шари уздовж площини (0 0 1) міжмолекулярними водневими зв'язками N1-H1...Cl1ⁱⁱⁱ [iii: 1-x,-1/2+y,2-z] (H...Cl 2,78 Å, N-H...Cl 148°).

Ключові слова: цинк(II), спирокарбон, координаційний полімер, структура, рентгеноструктурний аналіз.

Netreba E.E. Synthesis and investigation of molecular and crystal structure of coordination polymer of zinc chloride with 4,4,10,10-tetramethyl-1,3,7,9-tetraazospiro[5.5]undecan-2,8-dion (spirocarbon - Sk) / E.E. Netreba, A.M. Fedorenko // Scientific Notes of Taurida V.Vernadsky National University. - Series: Biology, chemistry. - 2012. - Vol. 25 (64), No. 2. - P. 252-258.

Crystal and molecular structure of first synthesized coordination polymer $\{[ZnCl_2(C_{11}H_{20}N_4O_2)]\}_n$ is reported. Crystals are monoclinic, sp. gr. P2₁, a = 6,2121(17) Å, b = 11,276(3) Å, c = 11,387(3) Å, $\beta = 94,99(3)$ Å, V = 10,200794,6(3) Å³, $d_{calc} = 1,574$ g/cm³, Z = 2. Zinc ion is coordinated tetrahedrally with two chlorine atoms and two carbonyl oxygen atoms O1 and O2 of two ligand connected with by symmetry operation [2-z,1/2+y,2-z]. Bond angles, centered on zinc atom, are in range of 101,05(12)-122,13(9)°. Zn...Zn distance in polymer is 9,48 Å. Molecules in coordination polymers are additionally connected by intermolecular hydrogen bonds N2-H2...O2ⁱ [i: 2-x,1/2+y,2-z] (H...O 2,17 Å, N-H...O 147°) and N4-H4...Cl2ⁱⁱ [ii: 1-x,-1/2+y,2-z] (H...Cl 2,48 Å, N-H...Cl 159°). Chains are connected in layers along the plane (0 0 1) by intermolecular hydrogen bonds N1-H1...Cl1ⁱⁱⁱ [iii: 1-x,-1/2+y,2-z] (H...Cl 2,78 Å, N-H...Cl 148°).

Keywords: zinc (II), spirocarbon, coordination polymer, structure, X-Ray diffraction.

Поступила в редакцию 15.05.2012 г.